1000 resultados para Microtensile strength


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta pesquisa estudou a influência de diferentes velocidades de corte e marcas de discos diamantados nos valores de resistência adesiva, durante a preparação dos espécimes a serem submetidos à microtração, e na integridade das amostras por meio do microscópio eletrônico de varredura (MEV). Vinte blocos da cerâmica à base de dissilicato de lítio (IPS e.max Press) foram unidos com cimento resinoso (Rely X ARC) a blocos de compósito (Z100), construídos incrementalmente. Foram seguidas as recomendações dos fabricantes no tratamento da superfície da cerâmica e aplicação do cimento resinoso. Após 24 horas em água destilada a 37C, os espécimes foram divididos em dois grupos de discos: marcas Buehler e Extec e subdivididos nas velocidades de 200rpm e 400rpm (B2; E2; B4 e E4, respectivamente). Cada espécime foi cortado em dois eixos perpendiculares para obtenção de palitos com área adesiva de 1,0mm. Para cada condição experimental, os palitos foram separados, aleatoriamente, 15 palitos para análise ao MEV e 30 palitos para serem submetidos à força de tração. As médias de resistência adesiva em MPa foram E4=20,312 ; B4= 24,2 11,3 ; B2= 25,2 9,0 e E2= 28,6 10,4. Na análise estatística, observou-se que os valores de resistência adesiva na velocidade de 200rpm foram significativamente maiores comparados a velocidade de 400rpm, independente do disco empregado. Ao MEV, observou-se melhor integridade dos palitos na velocidade de 200rpm com presença de trincas menos extensas nas bordas externas. Constatou-se também que o disco Extec na velocidade de 400rpm apresentou movimentos excêntricos ao corte e obteve-se maior número de perdas prematuras, uma diminuição significante na média da área total de união (p<0,05), além de diferença significativa nos valores de resistência comparada a velocidade de 200rpm. Concluiu-se que a utilização de diferentes velocidades e sua interação com o disco empregado interfere na integridade dos espécimes e nos valores de resistência adesiva, sendo mais acentuada ao se utilizar o disco da marca Extec.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este estudo avaliou o efeito de diferentes métodos de silanização e aplicação do ácido hidrofluorídrico (HF) sobre a resistência à microtração de uma cerâmica de dissilicato de lítio a um cimento resinoso. Quarenta blocos de IPS e.max Press /Ivoclar Vivadent (5x5x6mm) foram cimentados a blocos de resina Z250/3M ESPE (5x5x6mm) usando o cimento resinoso RelyX ARC/3M ESPE de acordo com os seguintes métodos de tratamento superficial: G1: 20s de ácido fluorídrico (HF) + silano não hidrolisado Primer-Activactor/Dentsply (SNH) seco à temperatura ambiente; G2: 20s HF + silano pré-hidrolisado RelyX Ceramic-Primer/3M ESPE (SPH) seco à temperatura ambiente; G3: 10s HF + SNH seco com ar quente (50oC-2min); G4: 10sHF + SPH seco com ar quente (50oC-2min); G5: sem ácido, SNH seco com ar quente (50oC-2min); G6: sem ácido, SPH seco com ar quente (50oC-2min); G7: sem ácido, SNH seco à temperatura ambiente; G8: sem ácido, SPH seco à temperatura ambiente. Antes de cada método de silanização, os blocos cerâmicos receberam acabamento com lixas de carbeto de silício (220-600) e limpeza com ácido fosfórico 37% (1min). A cimentação foi realizada com carga vertical de 1kg por 10min. Os conjuntos de cerâmica/cimento/resina foram armazenados em água destilada (37C) por 24 horas e depois seccionados em máquina de corte Isomet 1000 a fim de obter palitos (n = 40) de 1mm2 de área da seção transversal, que foram submetidos ao teste de microtração em máquina de ensaio universal Emic (v = 0,5mm/min). O modo de fratura foi avaliado em microscópio eletrônico de varredura. A análise estatística foi realizada utilizando ANOVA / Dunnett (p-valor = 0,000). As médias MPa e desvio padrão foram: G1-21,5 (8,9) BC; G2-30,5 (7,2) A; G3-19.4 (9.1) BC; G4-24,0 (9,0) B; G5-8.1 (3.2) D; G6 -18,0 (6,2) C; G7-7.8 (2,6) D; G8-6.3 (2,5) D. Grupos 2, 3, 4 e 6 não tiveram falhas prematuras dos palitos contra os grupos 1, 5, 7 e 8, que apresentaram 2,2; 44,4; 75,6 e 33,3% de perdas prematuras, respectivamente. O teste de correlação foi realizado apresentando significância estatística, com valor de -0,736 (p-valor = 0,000), mostrando que, a medida que o percentual de perda prematura aumenta, a média da MPa diminui. Quanto ao modo de fratura, observou-se 44,97% de falhas do tipo mista, 51,70% de falhas do tipo adesiva, 3,33% de falhas do tipo coesiva do cimento. Quando é realizada a supressão do condicionamento com HF como pré-tratamento da superfície cerâmica IPS e.max Press, a aplicação de silano SPH, associada ao seu tratamento térmico, deve ser o método de silanização recomendado, embora os valores mais elevados de resistência de união tenham sido os obtidos quando utilizado o condicionamento com HF por 20s. Quando é realizada a redução do tempo de condicionamento com HF para 10s, a aplicação do silano (SPH ou SNH) deve ser sempre associada ao seu tratamento térmico. O SNH só deve ser usado se as superfícies das cerâmicas IPS e.max Press forem tratadas com HF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: The aim of this research is to use finite element analysis (FEA) to quantify the effect of the sample shape and the imperfections induced during the manufacturing process of samples on the bond strength and modes of failure of dental adhesive systems through microtensile test. Using the FEA prediction for individual parameters effect, estimation of expected variation and spread of the microtensile bond strength results for different sample geometries is made. Methods: The estimated stress distributions for three different sample shapes, hourglass, stick and dumbbell predicted by FEA are used to predict the strength for different fracture modes. Parameters such as the adhesive thickness, uneven interface of the adhesive and composite and dentin, misalignment of axis of loading, the existence of flaws such as induced cracks during shaping the samples or bubbles created during application of the adhesive are considered. Microtensile experiments are performed simultaneously to measure bond strength and modes of failure. These are compared with the FEA results. Results: The relative bonding strength and its standard deviation for the specimens with different geometries measured through the microtensile tests confirm the findings of the FEA. The hourglass shape samples show lower tensile bond strength and standard deviation compared to the stick and dumbbell shape samples. ANOVA analysis confirms no significant difference between dumbbell and stick geometry results, and major differences of these two geometries compared to hourglass shape measured values. Induced flaws in the adhesive and misalignment of the angle of application of load have significant effect on the microtensile bond strength. Using adhesive with higher modulus the differences between the bond strength of the three sample geometries increase. Significance: The result of the research clarifies the importance of the sample geometry chosen in measuring the bond strength. It quantifies the effect of the imperfections on the bond strength for each of the sample geometries through a systematic and all embracing study. The results explain the reasons of the large spread of the microtensile test results reported by various researchers working in different labs and the need for standardization of the test method and sample shape used in evaluation of the dentin-adhesive bonding system. © 2007 Academy of Dental Materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: In light of the concept of minimally invasive dentistry, erbium lasers have been considered as an alternative technique to the use of diamond burs for cavity preparation. The purpose of this study was to assess the bonding effectiveness of adhesives to Er,Cr:YSGG laser-irradiated dentin using irradiation settings specific for cavity preparation. Materials and Methods: Fifty-four midcoronal dentin surfaces, obtained from sound human molars, were irradiated with an Er,Cr:YSGG laser or prepared with a diamond bur using a high-speed turbine. One etch-and-rinse (Optibond FL/Kerr) and three self-etching adhesives (Adper Prompt L-Pop/3M ESPE, Clearfil SE Bond/Kuraray, and Clearfil S-3 Bond/Kuraray) were used to bond the composite to dentin. The microtensile bond strength (mu TBS) was determined after 24 h of storage in water at 37 degrees C. The Kruskal-Wallis test was used to determine pairwise statistical differences (p < 0.05). Prepared dentin surfaces, adhesive interfaces, and failure patterns were analyzed using a stereo microscope and Field-emission gun Scanning Electron Microscopy (Feg-SEM). Results: Significantly lower mu TBS was observed to laser-irradiated than to bur-cut dentin (p < 0.05), irrespective of the adhesive employed. Feg-SEM photomicrographs of lased dentin revealed an imbricate patterned substrate and the presence of microcracks at the dentin surface. Conclusion: Morphological alterations produced by Er,Cr:YSGG laser-irradiation adversely influence the bonding effectiveness of adhesives to dentin. Keywords: dentin, adhesion, adhesives, laser, ErCr:YSGG.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective this study was to evaluate in vitro the bond strength of two etch-and-rise and one self-etching adhesive system after dentin irradiation with Er:YAG (erbium: yttrium aluminum garnet) laser using microtensile test. The results revealed that the groups treated with laser Er:YAG presented less tensile bond strength, independently to the adhesive system used. The prompt L-pop adhesive presented less microtensile bond strength compared to the other adhesives evaluated. There was no difference between single bond and excite groups. The adhesive failures were predominant in all the experimental groups. The Er:YAG laser influenced negatively bond strength values of adhesive systems tested in dental substrate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To evaluate whether Nd:YAG laser irradiation of etched and unetched dentin through an uncured adhesive affected the microtensile bond strength (pTBS).Materials and Methods: Flat dentin surfaces were created in 19 extracted human third molars. Adper Single Bond (SB) adhesive was applied over etched (groups 1 to 3) or unetched dentin (groups 4 to 6). The dentin was then irradiated with a Nd:YAG laser through the uncured adhesive, using 0.75 or 1 W power settings, except for the control groups (groups 1 and 4). The adhesive was light cured and composite crowns were built up. After 24 h, the teeth were sectioned into beams, with cross-sectional areas of 0.49 mm(2), and were stressed under tension. Data were statistically analyzed using two-way ANOVA and Tukey's test (alpha = 5%). Dentin surfaces of fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM).Results: Acid etching, laser irradiation, and their interaction significantly affected bonding (p < 0.05). Laser irradiation did not improve bonding of etched dentin to resin (p > 0.05). However, higher pTBS means were found on unetched lased dentin (groups 5 and 6), but only in comparison to group 4, where neither lasing nor etching was performed. Groups 4 to 6 showed the lowest pTBS means among all groups tested (p < 0.05). Laser irradiation did not change the characteristics of the hybrid layers created, while solidification globules were observed on lased dentin surfaces under SEM.Conclusion: Laser irradiation of dentin through the uncured adhesive did not significantly improve the pTBS in comparison to the suggested manufacturer's technique.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study was to evaluate the durability of bond strength between a resin cement and aluminous ceramic submitted to various surface conditioning methods. Twenty-four blocks (5 X 5 X 4 mm 3) of a glass-in filtrated zirconia-alumina ceramic (inCeram Zirconia Classic) were randomly divided into three surface treatment groups: ST1-Air-abrasion with 110-mu m Al2O3 particles + silanization; ST2-Laboratory tribochemical silica coating method (110-mu m Al2O3, ilO-PM Silica) (Rocatec) + silanization; ST3-Chairside tribochemical silica coating method (30-mu m SiOx) (CoJet) + silanization. Each treated ceramic block was placed in its silicone mold with the treated surface exposed. The resin cement (Panavia F) was prepared and injected into the mold over the treated surface. Specimens were sectioned to achieve nontrimmed bar specimens (14 sp/block) that were randomly divided into two conditions: (a) Dry-microtensile test after sectioning; (b) Thermocycling (TC)-(6,000X, 5-55 degrees C) and water storage (150 days). Thus, six experimental groups were obtained (11 = 50): Gr1-ST1 + dry; Gr2-ST1 + TC. Gr3-ST2 + dry; Gr4-ST2 + TC; Gr5-ST3 + dry; Gr6ST3 + TC. After microtensile testing, the failure types were noted. ST2 (25.1 +/- 11) and ST3 (24.1 +/- 7.4) presented statistically higher bond strength (MPa) than that of STI (17.5 +/- 8) regardless of aging conditions (p < 0.0001). While Gr2 revealed the lowest results (13.3 +/- 6.4), the other groups (21.7 +/- 7.4-25. 9 +/- 9.1) showed statistically no significant differences (two-way ANOVA and Tukey's test, a 0.05). The majority of the failures were mixed (82%) followed by adhesive failures (18%). Gr2 presented significantly higher incidence of ADHESIVE failures (54%) than those of other groups (p = 0.0001). Both laboratory and chairside silica coating plus silanization showed durable bond strength. After aging, airabrasion with 110-mu m Al2O3 + silanization showed the largest decrease indicating that aging is fundamental for bond strength testing for acid-resistant Arconia ceramics in order to estimate their long-term performance in the mouth. (c) 2007 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statement of problem. According to manufacturers, bonding with self-adhesive resin cements can be achieved without any pretreatment steps such as etching, priming, or bonding. However, the benefit of saving time with these simplified luting systems may be realized at the expense of compromising the bonding capacity.Purpose. The purpose of this study was to assess whether different dentin conditioning protocols influence the bond performance of self-adhesive resin cements to dentin.Material and methods. Flat dentin surfaces from 48 human molars were divided into 4 groups (n=12): 1) control, no conditioning; 2) H(3)PO(4), etching with 37% H(3)PO(4) for 15 seconds; 3) SEBond, bonding with self-etching primer adhesive (Clearfil SE Bond); and 4) EDTA, etching with 0.1M EDTA for 60 seconds. The specimens from each dentin pre-treatment were bonded using the self-adhesive cements RelyX Unicem, Maxcem or Multilink Sprint (n=4). The resin-cement-dentin specimens were stored in water at 37 degrees C for 7 days, and serially sectioned to produce beam specimens of 1.0 mm(2) cross-sectional area. Microtensile bond strength (mu TBS) testing was performed at 1.0 mm/min. Data (MPa) were analyzed by 2-way ANOVA and Tukey multiple comparisons test (alpha=.05). Fractured specimens were examined with a stereomicroscope (x40) and classified as adhesive, mixed, or cohesive. Additional bonded interfaces were evaluated under a scanning electron microscope (SEM).Results. Cement-dentin mu TBS was affected by the dentin conditioning approach (P <.001). RelyX Unicem attained statistically similar bond strengths to all pre-treated dentin surfaces. H(3)PO(4)-etching prior to the application of Maxcem resulted in bond strength values that were significantly higher than the other groups. The lowest mu TBS were attained when luting Multilink Sprint per manufacturers' recommendations, while H(3)PO(4)-etching produced the highest values followed by Clearfil SE bonding and EDTA. SEM observations disclosed an enhanced potential of the self-adhesive cements to form a hybrid layer when applied following manufacturer's instructions.Conclusions. When evaluated self-adhesive resin cements are used, selectively etching dentin with H(3)PO(4) prior to luting results in the most effective bonding. (J Prosthet Dent 2011;105:227-235)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: This study evaluated the effect of cutting initiation location and cutting speed on the bond strength between resin cement and feldspathic ceramic.Materials and Methods: Thirty-six blocks (6.4 x 6.4 x 4.8 mm) of ceramic (Vita VM7) were produced. The ceramic surfaces were etched with 10% hydrofluoric acid gel for 60 s and then silanized. Each ceramic block was placed in a silicon mold with the treated surface exposed. A resin cement (Variolink II) was injected into the mold over the treated surface and polymerized. The resin cement-ceramic blocks were divided into two groups according to experimental conditions: a) cutting initiation location - resin cement, ceramic and interface; and b) cutting speed - 10,000, 15,000, and 20,000 rpm. The blocks were sectioned to achieve non-trimmed bar specimens. The microtensile test was performed in a universal testing machine (1 mm/min). The failure modes were examined using an optical light microscope and SEM. Bond strength results were analyzed using one-way ANOVA and Tukey's test (alpha = 0.05).Results: Significant influences of cutting speed and initiation location on bond strength (p < 0.05) were observed. The highest mean was achieved for specimens cut at 15,000 rpm at the interface (15.12 +/- 5.36 MPa). The lowest means were obtained for specimens cut at the highest cutting speed in resin cement (8.50 +/- 3.27 MPa), and cut at the lowest cutting speed in ceramic (8.60 +/- 2.65MPa). All groups showed mainly mixed failure (75% to 100%).Conclusion: The cutting speed and initiation location are important factors that should be considered during specimen preparation for microtensile bond strength testing, as both may influence the bond strength results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives: To evaluate the hypothesis that a process of hydrofluoric acid precipitate neutralization and fatigue load cycling performed on human premolars restored with ceramic inlays had an influence on microtensile bond strength results (MTBS). Methods: MOD inlay preparations were performed in 40 premolars (with their roots embedded in acrylic resin). Forty ceramic restorations were prepared using glass-ceramic (IPS Empress). The inner surfaces of all the restorations were etched with 10% hydrofluoric acid for 60 seconds, rinsed with water and dried. The specimens were divided into two groups (N=20): 1-without neutralization; 2-with neutralization. All the restorations were silanized and adhesively cemented (self-curing and self-etching luting composite system, Multilink). Ten premolars from each group were submitted to mechanical cycling (1,400,000 cycles, 50N, 37 degrees C). After cycling, the samples were sectioned to produce non-trimmed beam specimens (vestibular dentin-restoration-lingual dentin set), which were submitted to microtensile testing. Results: Bond strength was significantly affected by the surface treatment (p<0.0001) (no neutralization > neutralization) and mechanical cycling (p<0.0001) (control > cycling) (2-way ANOVA and Tukey test, alpha=.05). Conclusion: Hydrofluoric acid precipitate neutralization appears to significantly damage the resin bond to glass-ceramic and should not be recommended. The clinical simulation of the specimens, by using mechanical cycling, is important when evaluating the ceramic-dentin bond.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study tested the bond strength of a resin cement to a glass-infiltrated zirconia-alumina ceramic after three conditioning methods and using two test methods (shear-SBS versus microtensile-MTBS). Ceramic blocks for MTBS and ceramic disks for SBS were fabricated. Three surface conditioning (SC) methods were evaluated: (1) 110-mu m Al(2)O(3)+Silanization; (2) Chairside silica coating+silanization: (3) Laboratory silica coating+silanization. Following surface conditioning, the resin cement (Panavia F) was bonded to the conditioned ceramics. Although no statistically significant differences (p=0.1076) were seen between the test methods, results yielded with the different surface conditioning methods showed statistically significant differences (p<0.0001) (SC2=SC3>SC1.). As for the interaction between the factors, two-way ANOVA showed that it was not statistically significant (p=0.1443). MTBS test resulted in predominantly mixed failure (85%), but SBS test resulted in exclusively adhesive failure. on the effects of different surface conditioning methods, chairside and laboratory tribochemical silica coating followed by silanization showed higher bond strength results compared to those of aluminum oxide abrasion and silanization, independent of the test method employed.